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Abstract This paper discusses an algorithm for phase change front identification in continuous
casting. The problem is formulated as an inverse geometry problem, and the solution procedure
utilizes temperature measurements inside the solid phase and sensitivity coefficients. The proposed
algorithms make use of the boundary element method, with cubic boundary elements and Bezier
splines employed for modelling the interface between the solid and liquid phases. A case study of
continuous casting of copper is solved to demonstrate the main features of the proposed
algorithms.

1. Introduction
The continuous casting process of metals and alloys is a common procedure in
the metallurgical industry. Typically, the liquid material flows into the mould
(crystallizer), where the walls are cooled by flowing water. The solidifying
ingot is then pulled by withdrawal rolls. The side surface of the ingot, below
the mould, is very intensively cooled by water flowing out of the mould and
sprayed over the surface, outside the crystallizer.

An accurate determination of the interface location between the liquid and
solid phases is very important for the quality of the casting material. The
estimation of this phase change front location can be found by using direct
modelling techniques (Crank, 1984) such as the enthalpy method or front
tracking algorithms or, as shown in this paper, by solving an inverse geometry
problem.

Several previous works have dealt with inverse geometry problems (Bénard
and Afshari, 1992; Kang and Zabaras, 1995; Nowak et al., 2000; Tanaka et al.,
2000; Zabaras, 1990; Zabaras and Ruan, 1989). In particular, Zabaras and Ruan
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(1989) developed a formulation based on a deforming finite element method
(FEM) and sensitivity coefficients to analyze one-dimensional inverse Stefan
problems. Their formulation was applied to study the problem of calculating
the position and velocity of the moving interface from the temperature
measurements of two or more sensors (thermocouples) located inside the solid
phase. Zabaras (1990) extended the deforming FEM formulation to two other
problems: the first calculated the boundary heat flux history that would
achieve a specified velocity and flux at the freezing front, while the second
calculated the boundary heat flux and freezing front position, given the
appropriate estimates of the temperature field in a specified number of sensors.
Bénard and Afshari (1992) developed a sequential algorithm for the
identification of the interface location, for one- and two-dimensional
problems, using discrete measurements of temperature and heat flux at the
fixed part of the solid boundary. Kang and Zabaras (1995) calculated the
optimum history of boundary cooling conditions that resulted in a desired
history of the freezing interface location and motion, for a two-dimensional
conduction-driven solidification process.

In the present work following Nowak et al. (2000) and Tanaka et al. (2000),
the solution procedure involves the application of the boundary element
method (BEM) (Brebbia et al., 1984; Wrobel and Aliabadi, 2002) to estimate the
location of the phase change front, making use of temperature measurements
inside the solid phase. This front is approximated by Bezier splines, and this is
significant for the reduction of the number of design variables and, as a
consequence, of the number of required measurements.

Identification of the position of the phase change front requires to build up a
series of direct solutions, which gradually approach the correct location.
Generally, inverse problems are ill-posed. Thus, there is a problem with the
stability and uniqueness of solution (Goldman, 1997). In this paper, it is
proposed that the iteration process (necessary because of the non-linear nature
of the problem) is preceded by a lumping process. This allows the definition of
an initial front position which guarantees convergence of the solution.

The measurements can be obtained by immersing thermocouples into the
melt and allowing them to travel with the solidified material, until they are
damaged. From certain relationships between time and location of nodes in the
continuous casting process, even a limited number of thermocouples can
provide a substantial amount of useful information. Alternatively, it is also
possible to obtain temperature measurements by using an infrared camera.
Although generally more accurate, temperatures have to be measured at the
body surface outside the crystallizer, thus at some distance from the phase
change front.

It is worth to stress that although temperature measurements in this work
are limited only to the solid phase, they carry information on the heat transfer
phenomena occurring on the solid-liquid interface. Moreover, mathematical
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models available for solids (based on heat conduction) are much more
reliable than those for liquids where heat convection generally plays an
important role.

2. Problem formulation
This section starts with a brief description of the mathematical model of the
direct heat transfer problem for continuous casting. This model serves as a
basis for the inverse problem that is discussed in detail in the remainder of the
section. The direct problem will also be employed to generate simulated
temperature measurements for the application of the proposed inverse analysis
algorithms.

The mathematical description of the physical problem consists of
. a convection-diffusion equation for the solid part of the ingot:

72TðrÞ2
1

a
vx
›T

›x
¼ 0 ð1Þ

where T(r) is the temperature at point r, vx is the casting velocity
(assumed to be constant and in the positive x-direction) and a is the
thermal diffusivity of the solid phase, and

. boundary conditions defining the heat transfer process along the
boundaries ABCDO (Figure 1), including the specification of the melting
temperature along the phase change front:

TðrÞ ¼ Tm; r e GAB ð2Þ

TðrÞ ¼ Ts; r e GDO ð3Þ

2l
›T

›n
¼ qðrÞ ¼ 0; r e GOA ð4Þ

2l
›T

›n
¼ qðrÞ; r e GBC ð5Þ

2l
›T

›n
¼ h½TðrÞ2 Ta�; r e GCD ð6Þ

where Tm is the melting temperature, Ta is the ambient temperature, Ts is the
ingot temperature when leaving the system, l is the thermal conductivity, h is
the convective heat transfer coefficient and q is the heat flux.

In the inverse analysis, the location of the phase change front where the
temperature is equal to the melting temperature is unknown. This means that
the mathematical description is incomplete and needs to be supplemented by

Inverse analysis

549



measurements. Typically, the temperatures Ui are measured at some points
inside the ingot (in case of using thermocouples) or on the surface (if an infrared
camera is used). These measurements are collected in a vector U.

The objective is to estimate components of vector Y, which uniquely
describes the phase change front location. In this work, two segments of Bezier
splines are used to approximate the interface. This means that vector Y
contains components of the control points defining the Bezier splines.

The ill-conditioned nature of all inverse problems requires that the number
of measurement sensors should be appropriate to make the problem
overdetermined. This is achieved by using a number of measurement points
greater than the number of design variables. Thus, in general, inverse analysis
leads to optimization procedures with least squares calculations of the objective
functions D. However, in the cases studied here, an additional term intended
to improve the stability is also introduced (Kurpisz and Nowak, 1995;
Nowak, 1997), i.e.

D ¼ ðTcal 2 UÞT W21ðTcal 2 UÞ þ ðY 2 ~YÞTW21
Y ðY 2 ~YÞ! min ð7Þ

where vector Tcal contains temperatures calculated at temperature sensor
locations, U stands for the vector of temperature measurements and
superscript T denotes transpose matrices. The symbol W denotes

Figure 1.
Schematic of the
continuous casting
system and the domain
under consideration
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the covariance matrix of measurements. Thus, the contribution of more
accurately measured data is stronger than the data obtained with lower
accuracy. Known prior estimates of design vector components are collected
in vector ~Y; and WY stands for the covariance matrix of prior estimates. The
coefficients of matrix WY have to be large enough to catch the minimum (these
coefficients tend to infinity, if prior estimates are not known). It was found that
the additional term in the objective function, containing prior estimates, plays a
very important role in the inverse analysis, because it considerably improves
the stability and accuracy of the inverse procedure.

The present inverse problem is solved by building up a series of direct
solutions which gradually approach the correct position of the phase change
front. This procedure can be expressed by the following main steps.

. Make the boundary problem well-posed. This means that the
mathematical description of the thermal process is completed by
assuming arbitrary values Y* (as required by the direct problem).

. Solve the direct problem obtained above and calculate temperatures T* at
the sensor locations.

. Compare the above calculated temperatures T* and measured values U,
and modify the assumed data Y*.

Inverse geometry problems are always non-linear. Thus, an iterative procedure
is generally necessary. In this procedure, iterative loops are repeated until
the newly obtained vector Y minimizes the objective function (7) within a
specified accuracy (Beck and Blackwell, 1988; Kurpisz and Nowak, 1995;
Nowak, 1997).

Each iteration loop involves the application of sensitivity analysis (Beck and
Blackwell, 1988; Nowak, 1997), which utilizes sensitivity coefficients.
According to their definition, these coefficients are the derivatives of the
temperature at point i with respect to identified values at point j, i.e.

Zij ¼
›Ti

›Yj

ð8Þ

and provide a measure of each identified value and an indication of how much
it should be modified.

Sensitivity coefficients are obtained by solving a set of auxiliary direct
problems in succession. Each of these direct problems arises through
differentiation of equation (1) and corresponding boundary conditions (2)-(6)
with respect to the particular design variable Yj. Thus, the resulting field Zj is
governed by an equation of the form:

72ZjðrÞ2
1

a
vx
›Zj

›x
¼ 0 ð9Þ
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Differentiation of the boundary conditions (3)-(6) produces conditions of the
same type as in the original thermal problem, as follows:

ZjðrÞ ¼ 0; r e GDO ð10Þ

2l
›Zj

›n
¼ 0; r e GOA ð11Þ

2l
›Zj

›n
¼ 0; r e GBC ð12Þ

2l
›Zj

›n
¼ hZj; r e GCD ð13Þ

The boundary condition along the phase change front GAB is also obtained by
differentiating equation (2):

›T

›Yj

þ
›T

›x

›x

›Yj

þ
›T

›y

›y

›Yj

¼ 0 ð14Þ

where the derivatives of x and y with respect to the design variable Yj depend
on the particular geometrical representation of the phase change front (Nowak
et al., 2000). In this work, two Bezier splines are used, as discussed in more
detail later.

Equation (14) can now be rewritten as

Zj ¼ 2
›T

›x

›x

›Yj

2
›T

›y

›y

›Yj

ð15Þ

or, taking into account Fourier’s law,

Zj ¼ 2
1

l
qx

›x

›Yj

2 qy
›y

›Yj

� �
ð16Þ

where qx and qy are the x- and y-components of the heat flux vector.
The Cartesian components of the heat flux vector can be expressed in terms

of the tangential and normal components, qt and qn, by the relations:

qx ¼ 2qn cosðaÞ2 qt cos p
2 þ a

� �
qy ¼ 2qn sinðaÞ þ qt sin p

2 þ a
� �

8<
: ð17Þ

where cos(a) and sin(a) are the direction cosines of the normal vector pointing
outwards the solid phase (Figure 2).
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Taking the above into account, the boundary condition along the phase
change front takes the final form:

Zj ¼ 2
1

l
½2qn cosðaÞ þ qt sinðaÞ�

›x

›Yj

þ ½qn sinðaÞ2 qt cosðaÞ�
›y

›Yj

� 	

ð18Þ

Solving the above direct problem for the field Zj, one can collect results at
particular measurement points, i.e. Zij; i ¼ 1; 2; . . .: Repeating this procedure
for all design variables, the whole sensitivity matrix Z can then be constructed.
This is the most expensive and time consuming stage of the analysis.

Through application of sensitivity analysis and some basic algebraic
manipulations (Nowak et al., 2000), minimization of the objective function
equation (7) leads to the following set of equations (Nowak, 1997; Nowak et al.,
2000):
�
ZTW21Z þ W21

Y

�
Y ¼ ZTW21ðU 2 T* Þ þ ðZTW21ZÞY* þ W21

Y
~Y ð19Þ

In this work, the BEM is applied for solving both thermal and sensitivity
coefficient problems. The main advantage of using this method is the
simplification in meshing, as only the boundaries have to be discretized. This is
particularly important in inverse geometry problems in which the geometry of
the body is changed at each iteration step. Furthermore, the location of the
internal measurement sensors does not affect the discretization. Finally, in heat
transfer analysis, BEM solutions directly provide temperatures and heat fluxes,
both of which are required by inverse solutions. In other words, the numerical
differentiation of the temperature field in order to calculate heat fluxes is not
needed.

The BEM system of equations for both the thermal and sensitivity
coefficient problems has the same form:

HT ¼ GQ ð20Þ

Figure 2.
Geometrical relations on

the phase change front
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HZj ¼ GQZ
j ð21Þ

where H and G stand for the BEM influence matrices. The fundamental
solution of the two-dimensional convection-diffusion equation is expressed by
the following formula, assuming that the velocity field is constant along the
x-direction:

u* ¼
1

2pl
exp 2

vxrx

2a


 �
K0

jvxjr

2a

� �
ð22Þ

where K 0 stands for the Bessel function of the second kind and zero order and
r is the distance between source and field points, with its component along
the x-axis denoted by rx.

3. Application of Bezier splines
As noted before, the ill-conditioned nature of all inverse problems requires
that they have to be made overdetermined. On the other hand, it is very
important to limit the number of sensors, mainly because of the difficulties
with measurements acquisition. Application of Bezier splines allows the
modelling of the phase change front using a much smaller number of design
variables.

The Bezier curve (Draus and Mazur, 1991) is built up of cubic segments.
Each of these segments is controlled by four control points V0, V1, V2 and V3

(Figure 3). The following formula presents the definition of cubic Bezier
segments:

PðuÞ ¼ ð1 2 uÞ3V0 þ 3ð1 2 uÞ2uV1 þ 3ð1 2 uÞu2V2 þ u3V3 ð23Þ

where P(u) stands for a point on the Bezier curve, and u varies in the range
k0; 1l: This formula has to be differentiated with respect to the design variable
Yj (i.e. the x- and/or y-coordinate of the given control point) in order to obtain
derivatives required in the boundary condition (18).

Numerical experiments have shown that a Bezier curve composed of two
cubic segments satisfactorily approximates the phase change front. An extra
advantage is that the application of Bezier curves permits to limit the number
of identified values. In reality, some of these values (coordinates of Bezier
control points) are defined by additional constraints resulting from the physical
nature of the problem. These conditions are listed below:

. the y-coordinates of the first and the last control points of the Bezier
curves (VI

0;V
II
3 in Figure 4) are known because those points are located on

the ingot surface and symmetry axis, respectively;
. the last control point of the first segment, VI

3; and the first of the second
segment, VII

0 ; occupy the same position;

HFF
13,5

554



. the smoothness of the curve at the connecting points between two Bezier
segments is guaranteed if the appropriate control points are collinear
(Draus and Mazur, 1991) (compare with Figure 4);

. the equality of the x-coordinate of points VII
2 and VII

3 ensures the existence
of derivatives on the symmetry axis.

Because of the above conditions only ten quantities have to be estimated, which
fully describe the position of the phase change front. Thus, application of the
Bezier functions significantly reduces the number of design variables (Nowak
et al., 2000), which also means a reduction in the number of required
measurements. Acquiring temperature measurements at points located inside
the ingot requires to immerse thermocouples in the solidifying material. This
perturbs part of the casted material during measurements. The application of
an infrared camera is another method of obtaining measurements. Although
the first approach seems to be better, because the measurements location can be
closer to the identified values, the second does not destroy any casted material
and provides measurements which are generally more accurate. Nevertheless,
both methods of measuring temperatures always involve measurement errors,
which affect the final results.

Figure 4.
Identified values in the

problem with two Bezier
segments

Figure 3.
One Bezier segment and

its control points
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4. Starting point and lumping
Extensive computing of inverse geometry problems showed the great influence
of prior estimates and the initial guess on the solution existence and
convergence. Contrary to direct problems, the existence of solutions to
non-linear inverse problems is not clear. Some starting guesses may not fulfill
the conditions for solving the problem. This means that, at the beginning of the
iteration process, there is no guarantee that the assumed starting front position
(i.e. the starting set of Bezier control points) will lead to the solution.

Because of this, it is proposed (Nowak et al., 2001) that the iteration process
is preceded by a kind of lumping process. This lumping consists of summing
up the coefficients in each row of the main matrix A ¼ ZTW21ZþW21

Y of
equation (19) and placing the result on the main diagonal of the square matrix
L. Thus, matrix L takes the following form:

L ¼

Xn

j¼1

z1j 0 . . . 0

0
Xn

j¼1

z2j . . . 0

..

. ..
. ..

.

0 0 . . .
Xn

j¼1

znj

2
6666666666666664

3
7777777777777775

ð24Þ

where zij is an element of the square matrix A. Such matrix decouples the
system (19) and each equation may be solved separately.

It was found that replacing matrix A in equation (19) by L in the first step of
the iteration procedure makes the process always convergent. Simultaneously,
in the present inverse geometry problem, application of the lumping procedure
turns out to be almost always necessary. An inappropriate initial position of
the interface without application of lumping usually leads, very quickly, to
results contradicting the physics of the problem. The phase change front in
successive iterations appears with very sharp corners, and the iterative process
eventually diverges. Such a situation is shown in Figure 5.

Searching for a starting position of the identified values is based on an
observation of matrix L. The largest coefficient on the diagonal of matrix L
shows the most sensitive initially-assumed design variables. This initially-
assumed coordinate could be the reason for the non-existence of solution, and
has to be improved. The direction and value of the correction are determined by
solving an appropriate equation from the decoupled system (19). Once this
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component of vector Y* is corrected, the original system (19) with matrix A can
be solved iteratively.

The above algorithm can be further extended in this way, so that not only
one component of vector Y* is corrected using matrix L, but also all of them.
Figure 6 presents a comparison of average errors in subsequent iterations,
obtained with the simple and the extended approaches. It can be seen that the
final results do not differ significantly. The approach in which all the estimated
values are corrected is more time consuming, so the first method seems to be
more useful in practical applications.

In the iteration process, it is important that subsequent Bezier control points
appear in the correct order. To guarantee the monotonicity of the x- and
y-coordinates (without which the Bezier segment makes a loop), the size of the
vector DY ¼ Y 2 Y* has to be controlled. If necessary, the calculated vector
DY may be reduced until the required criterion is fulfilled.

Figure 6.
Comparison of results

obtained with correcting
one (left) and all (right)

estimated values

Figure 5.
Estimated curve shape

without lumping
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5. Influence of the number of measurements and their errors on final
results
In order to demonstrate the main advantages of the lumping algorithm, a
two-dimensional continuous casting problem from the copper industry is
solved. The following heat fluxes were adopted in these calculations:
qBC ¼ 4 £ 106 W=m2 and qCD ¼ 4;000 (T2Ts) W/m2. All the results were
obtained for the melting temperature Tm ¼ 1;0838C; whereas the end
temperature Ts was assumed to be 508C. Temperature measurements were
assumed to be read inside the casting material (thermocouples) and along
the surface outside the crystallizer (infrared camera).

5.1 Signals recorded with thermocouples
First, the influence of measurement errors on the accuracy of the phase change
front location was tested. In general, manufacturers provide information on the
maximum temperature errors for measurements carried out by thermocouples,
for instance less than 2 per cent. In the analyses carried out here, measurement
errors were assumed at five levels, to be less than 0.1, 0.2, 0.5, 1 and 2 per cent.
In real conditions, the error variation can be approximated by a normal
(Gaussian) distribution. In the present paper, measured temperatures were
simulated by adding errors to temperatures obtained from the relevant direct
solution. The errors are generated by a random generator with normal and/or
uniform distribution.

Figure 7 shows the average temperature errors along the estimated phase
change interface, for various levels and distributions of measurement errors,
where the estimation of the phase change front location was carried out
iteratively. This iterative procedure is terminated when the average
temperature error stops changing or its changes do not exceed a given
tolerance. In the present work, this average error consists of the difference

Figure 7.
Average temperature
error along the estimated
phase change interface
with various levels and
distributions of error
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between the temperature T at a node lying on the Bezier curve (solid-liquid
boundary) and the melting temperature Tm, summed over all nodes lying on
this interface.

Figure 8 presents the successive locations of the phase change interface
and the relevant temperature distribution along this line for normal error
distribution and two measurement errors, i.e. 0.5 per cent (case (a)) and
2 per cent (case (b)), respectively.

The influence of the number and location of measurement points was the
next issue to investigate. This matter has a significant importance, particularly
when the temperature is measured inside the body using thermocouples. In this
paper, three different sets of sensors, i.e. sets A, B and C (shown in Figure 9),
have been tested. The first and second sets are obtained by immersing five
thermocouples in a solidifying material. In set A, the temperature is measured
along the estimated boundary, while in set B, sensors are located at the same
vertical locations (apart from the bottom one). The last set C consists only of
two thermocouples. It can be assumed that each of the thermocouples provide
five measurements (at equal time intervals). This means that 25 measurements
are obtained for sets A and B, and ten for set C.

For the present problem, the minimum number of measurements necessary
to solve the inverse problem is equal to ten. This is because of the application of
two Bezier splines to model the phase change front (the number of identified
values is equal to ten). Figure 10 shows a comparison of results obtained with

Figure 8.
Location of solid-liquid

boundary and
temperature distribution

along this boundary.
(a) mean error 0.5 per cent;
(b) mean error 2 per cent
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25 measurements for sets A and B, while similar comparisons for sets A and C
with ten measurements are shown in Figure 11. In this case, each thermocouple
in set A reads only two temperatures. These figures show that the best results
are obtained for small measurement errors and sensors placed close to the
identified values.

5.2 Signals recorded with infrared camera
An infrared camera is an alternative and relatively easy way for obtaining
temperature measurements. Furthermore, these cameras measure temperatures
with small errors, say 0.2 K. Unfortunately, the temperature has to be measured
on the surface of the body outside the crystallizer and therefore, the sensor
points are located at some distance from the phase change front. On the other
hand, there are no strong limitations on the number of measurement points.

Figures 12 and 13 show results obtained by using an infrared camera for
solving inverse geometry thermal problems. The first figure shows successive
phase change front locations obtained during the iteration process while in

Figure 9.
Three sets of
temperature sensors
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Figure 11.
Comparison of results for

sets A and C (ten
measurements). (a) mean

error 0.5 per cent;
(b) mean error 2 per cent

Figure 10.
Comparison of results for

sets A and B
(25 measurements).

(a) mean error 0.5 per cent;
(b) mean error 2 per cent
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Figure 12.
Front location and
temperature along the
interface boundary
(40 measurements,
maximum error
0.2 per cent)

Figure 13.
Comparison of results
obtained for
thermocouples
(25 measurements) and
infrared camera
(40 measurements)
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the second one, the average error is presented. This error consists of the
difference between the temperature T at a node lying on the Bezier curve
(solid-liquid boundary) and the melting temperature Tm, summed over all
nodes lying on this front.

A comparison of both methods (i.e. 25 sensors inside the body and 40
measurements obtained from infrared camera) shows that the results obtained
for the same measurement errors are better in the case of using thermocouples.
On the other hand, it is difficult to obtain measured temperatures with such a
low error level. In the case of infrared cameras, the phase change front location
is reasonable in view of the costs of the experiment. Furthermore,
measurements can easily be repeated as many times as required.

6. Conclusions
This paper presented an algorithm for solving inverse geometry problems in
continuous casting. The usefulness of the application of cubic Bezier functions
in modelling the phase change boundary has been shown. Using this approach,
a significant reduction in the number of identified values and, consequently, the
number of measurements have been achieved.

The dependence of the final results on the number, location and accuracy of
measurements was investigated. Temperatures were assumed to be measured
using thermocouples and/or infrared cameras. The results obtained with both
methods were presented and compared.

Some modifications to the solution algorithm, providing faster convergence
of the iteration process, have also been discussed. These modifications consist
of guessing the initial phase change front position employing a lumping
procedure. The paper also demonstrated the applicability of sensitivity
analysis to phase change heat transfer processes.
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